A DNA-Based Building Block for Designer Excitonic Circuits
نویسندگان
چکیده
منابع مشابه
A Fast and Self-Repairing Genetic Programming Designer for Logic Circuits
Usually, important parameters in the design and implementation of combinational logic circuits are the number of gates, transistors, and the levels used in the design of the circuit. In this regard, various evolutionary paradigms with different competency have recently been introduced. However, while being advantageous, evolutionary paradigms also have some limitations including: a) lack of con...
متن کاملDesigner cell signal processing circuits for biotechnology
Microorganisms are able to respond effectively to diverse signals from their environment and internal metabolism owing to their inherent sophisticated information processing capacity. A central aim of synthetic biology is to control and reprogramme the signal processing pathways within living cells so as to realise repurposed, beneficial applications ranging from disease diagnosis and environme...
متن کاملA universal platform for building molecular logic circuits based on a reconfigurable three-dimensional DNA nanostructure
Molecular logic gates are capable of performing various logic tasks for biomarker detection, disease diagnostics and therapy, and controlling biological progress. Herein, we integrated multiple components of a logic device into a single DNA 3D nano-assembly with a triangular prism structure. Compared with the separate construction of each component in previously reported DNA logic gate systems,...
متن کاملDesigner Genes and Engineered Circuits
The recent design andassembly of the first synthetic eukaryotic chromosome (Annaluru et al., 2014) inspires great confidence in our burgeoning ability to engineer life with desired properties and for new purposes. The creation, called synIII (it was modeled on Saccharomyces cerevisiae chromosome III), is matched in scale only by previous efforts in bacteria, and its successful assembly issues a...
متن کاملReplication: DNA Building Block Synthesis On Demand
Correct regulation of DNA nucleotide biosynthesis is emerging as a key issue of importance for genome integrity. The fission yeast Spd1 protein can modulate the activity of ribonucleotide reductase (RNR) by at least three different mechanisms. Now a paper reports that Spd1 turnover is linked to ongoing DNA synthesis.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Biophysical Journal
سال: 2016
ISSN: 0006-3495
DOI: 10.1016/j.bpj.2015.11.1681